2024 journal article

Reinforcement Learning-Based Control Sequence Optimization for Advanced Reactors

Journal of Nuclear Engineering.

UN Sustainable Development Goal Categories
7. Affordable and Clean Energy (OpenAlex)
Source: ORCID
Added: July 8, 2024

The last decade has seen the development and application of data-driven methods taking off in nuclear engineering research, aiming to improve the safety and reliability of nuclear power. This work focuses on developing a reinforcement learning-based control sequence optimization framework for advanced nuclear systems, which not only aims to enhance flexible operations, promoting the economics of advanced nuclear technology, but also prioritizing safety during normal operation. At its core, the framework allows the sequence of operational actions to be learned and optimized by an agent to facilitate smooth transitions between the modes of operations (i.e., load-following), while ensuring that all safety significant system parameters remain within their respective limits. To generate dynamic system responses, facilitate control strategy development, and demonstrate the effectiveness of the framework, a simulation environment of a pebble-bed high-temperature gas-cooled reactor was utilized. The soft actor-critic algorithm was adopted to train a reinforcement learning agent, which can generate control sequences to maneuver plant power output in the range between 100% and 50% of the nameplate power through sufficient training. It was shown in the performance validation that the agent successfully generated control actions that maintained electrical output within a tight tolerance of 0.5% from the demand while satisfying all safety constraints. During the mode transition, the agent can maintain the reactor outlet temperature within ±1.5 °C and steam pressure within 0.1 MPa of their setpoints, respectively, by dynamically adjusting control rod positions, control valve openings, and pump speeds. The results demonstrate the effectiveness of the optimization framework and the feasibility of reinforcement learning in designing control strategies for advanced reactor systems.