2024 journal article
Active Remote Sensing Assessment of Biomass Productivity and Canopy Structure of Short-Rotation Coppice American Sycamore (Platanus occidentalis L.)
Remote Sensing.
The short-rotation coppice (SRC) culture of trees provides a sustainable form of renewable biomass energy, while simultaneously sequestering carbon and contributing to the regional carbon feedstock balance. To understand the role of SRC in carbon feedstock balances, field inventories with selective destructive tree sampling are commonly used to estimate aboveground biomass (AGB) and canopy structure dynamics. However, these methods are resource intensive and spatially limited. To address these constraints, we examined the utility of publicly available airborne Light Detection and Ranging (LiDAR) data and easily accessible imagery from Unmanned Aerial Systems (UASs) to estimate the AGB and canopy structure of an American sycamore SRC in the piedmont region of North Carolina, USA. We compared LiDAR-derived AGB estimates to field estimates from 2015, and UAS-derived AGB estimates to field estimates from 2022 across four planting densities (10,000, 5000, 2500, and 1250 trees per hectare (tph)). The results showed significant effects of planting density treatments on LIDAR- and UAS-derived canopy metrics and significant relationships between these canopy metrics and AGB. In the 10,000 tph, the field-estimated AGB in 2015 (7.00 ± 1.56 Mg ha−1) and LiDAR-derived AGB (7.19 ± 0.13 Mg ha−1) were comparable. On the other hand, the UAS-derived AGB was overestimated in the 10,000 tph planting density and underestimated in the 1250 tph compared to the 2022 field-estimated AGB. This study demonstrates that the remote sensing-derived estimates are within an acceptable level of error for biomass estimation when compared to precise field estimates, thereby showing the potential for increasing the use of accessible remote-sensing technology to estimate AGB of SRC plantations.