2024 journal article

Wearable Solutions: Design, Durability, and Electrical Performance of Snap Connectors and Integrating Them into Textiles Using Interconnects

Textiles.

By: P. Ugale, S. Lingampally, J. Dieffenderfer & M. Suh

Source: ORCID
Added: July 22, 2024

Electronic textiles (e-textiles) merge textiles and electronics to monitor physiological and environmental changes. Innovations in textile functionalities and diverse applications have propelled e-textiles’ popularity. However, challenges like connection with external devices for signal processing and reliable interconnections between flexible textiles and rigid electronic circuits persist. Wearable connectors enable the effective communication of e-textiles with external devices. Factors such as electrical functionality and mechanical durability along with textile compatibility are crucial for their performance. Merging the rigid connectors on the flexible textiles requires conductive and flexible interconnects that can bridge this gap between soft and hard components. This work focuses on designing two-part detachable mechanical snap connectors for e-textiles. The textile side connectors are attached to the data transmission cables within the textiles using three interconnection techniques—conductive epoxy, conductive stitches, and soldering. Three types of connectors were developed that require three detaching or unmating forces (low, medium, and high). All connectors were subjected to 5000 mating–unmating cycles to evaluate their mechanical durability and electrical performance. Connectors with low and medium unmating forces exhibited a stable performance, while those with high unmating forces failed due to wear and tear. Conductive stitches maintained better conductance as compared to conductive epoxy and soldering methods.