2024 journal article

Evaluating Solid Phase Adsorption Toxin Tracking (SPATT) for passive monitoring of per- and polyfluoroalkyl substances (PFAS) with Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS)

SCIENCE OF THE TOTAL ENVIRONMENT, 947.

By: J. Dodds*, K. Kirkwood-Donelson, A. Boatman*, D. Knappe n, N. Hall*, A. Schnetzer n, E. Baker*

author keywords: Passive samplers; PFAS; SPATT; Cape Fear River; Skyline
UN Sustainable Development Goal Categories
Source: Web Of Science
Added: July 30, 2024

Detection and monitoring of per- and polyfluoroalkyl substances (PFAS) in aquatic environments has become an increasingly higher priority of regulatory agencies as public concern for human intake of these chemicals continues to grow. While many methods utilize active sampling strategies ("grab samples") for precise PFAS quantitation, here we evaluate the efficacy of low-cost passive sampling devices (Solid Phase Adsorption Toxin Tracking, or SPATTs) for spatial and temporal PFAS assessment of aquatic systems. For this study, passive samplers were initially deployed in North Carolina along the Cape Fear River during the summer and fall of 2016 and 2017. These were originally intended for the detection of microcystins and monitoring potentially harmful algal blooms, though this period also coincided with occurrences of PFAS discharge from a local fluorochemical manufacturer into the river. Additional samplers were then deployed in 2022 to evaluate changes in PFAS fingerprint and abundances. Assessment of PFAS showed legacy compounds were observed across almost all sampling sites over all 3 years (PFHxS, PFOS, PFHxA, etc.), while emerging replacement PFAS (e.g., Nafion byproducts) were predominantly localized downstream from the manufacturer. Furthermore, samplers deployed downstream from the manufacturer in 2022 noted sharp decreases in observed signal for replacement PFAS in comparison to samplers deployed in 2016 and 2017, indicating mitigation and remediation efforts in the area were able to reduce localized fluorochemical contamination.