2024 journal article
Vacancy-mediated transport and segregation tendencies of solutes in fcc nickel under diffusional creep: A density functional theory study
Physical Review Materials.
The Nabarro-Herring (NH) diffusional creep theory postulates the vacancy-mediated transport of atoms under a stress gradient as the creep mechanism under low-stress and high-temperature conditions. In multicomponent alloys, we premise that this stress-assisted flow of vacancies to and from grain boundaries will produce elemental segregation. An observation of such segregation, validated with theoretical predictions, can provide the necessary experimental evidence for the occurrence of NH creep. Theoretical calculations of the segregation tendencies via analyzing the dominant solute diffusion mechanisms and the difference in diffusivities of the elements are therefore essential. To this end, this study applies density functional theory calculations of migration barriers and solute-vacancy binding energies as input to the self-consistent mean-field theory to assess the vacancy-mediated diffusion mechanisms, transport coefficients, and segregation tendencies of Co, Cr, Mo, Re, Ta, and W solutes in face-centered-cubic Ni. We find Co, Re, and W to be slow diffusers at high temperatures and Cr, Mo, and Ta to be fast diffusers. Further analysis shows that the slow diffusers tend to always enrich at vacancy sinks over a wide range of temperatures. In contrast, the fast diffusers show a transition from depletion to enrichment as the temperature lowers. Furthermore, our analysis of the segregation tendencies under tensile hydrostatic strains shows that slow diffusers are largely unaffected by the strain and favor enrichment. On the other hand, the fast diffusers exhibit high sensitivity to strain and their segregation tendency can transition from depletion to enrichment at a given temperature. The transport coefficients calculated in this work are expected to serve as input to mesoscale microstructure models to provide a more rigorous assessment of solute segregation under NH creep conditions.