2024 journal article
Combining single-molecule and structural studies reveals protein and DNA conformations and assemblies that govern DNA mismatch repair
CURRENT OPINION IN STRUCTURAL BIOLOGY, 89.
DNA mismatch repair (MMR) requires coordinated sequential actions of multiple proteins during a window of time after the replication apparatus makes an error and before the newly synthesized DNA undergoes chromosome compaction and/or methylation of dGATC sites in some γ-proteobacteria. In this review, we focus on the steps carried out by MutS and MutL homologs that initiate repair. We connect new structural data to early and recent single-molecule FRET and atomic force microscopy (AFM) studies to reveal insights into how signaling within the MMR cascade connects MutS homolog recognition of a mismatch to downstream repair. We present unified models of MMR initiation that account for the differences in the strand discrimination signals between methyl- and non-methyl-directed MMR.