2024 journal article

Effective Nutrient Management of Surface Waters in the United States Requires Expanded Water Quality Monitoring in Agriculturally Intensive Areas

ACS Environmental Au.

Source: ORCID
Added: November 28, 2024

The U.S. Clean Water Act is believed to have driven widespread decreases in pollutants from point sources and developed areas, but has not substantially affected nutrient pollution from agriculture. Today, the highest nutrient concentrations in surface waters are often associated with agricultural production. In this Perspective, we explore whether challenges stemming from the Clean Water Act's inability to mitigate agricultural nutrient pollution are also exacerbated by coarse nutrient monitoring. We evaluate the current state of nutrient monitoring in surface waters of the contiguous U.S. relative to agricultural nutrient inputs to assess how monitoring effort varies across agriculturally intensive areas. The locations of nutrient monitoring stations with approximately seasonal sampling frequency (4 samples per year, on average) from 2012 to 2021 were compiled from the U.S. Water Quality Portal. Monitoring station locations were then compared to watershed-scale (HUC-8) nutrient inventory estimates for agricultural fertilizer and livestock manure inputs. From this assessment, we found that many, but not all, of the nation's most agriculturally intensive areas are under-monitored, and often unmonitored. While it is well-known that the Midwest is the epicenter of agricultural production in the U.S., our results reveal it is poorly monitored relative to its agricultural nutrient inputs. Other regions, like the California Central Valley and parts of the southeastern Coastal Plain were also coarsely monitored relative to nutrient inputs. Conversely, some agriculturally intensive watersheds were moderately-to-well monitored (e.g., western Lake Erie basin, eastern North Carolina, and the Delmarva Peninsula), with these basins largely having established Total Maximum Daily Loads and discharging to prominent waterways. In closing, we argue that sparse monitoring across many of the nation's most agriculturally intensive areas motivate a need to re-envision nutrient monitoring networks, and that increased resources and advanced technologies are likely required to enable effective nutrient source identification throughout the nation.