2024 article

Parallel Quantum Signal Processing Via Polynomial Factorization

By: J. Martyn, Z. Rossi, K. Cheng, Y. Liu* & I. Chuang

Source: ORCID
Added: December 11, 2024

Quantum signal processing (QSP) is a methodology for constructing polynomial transformations of a linear operator encoded in a unitary. Applied to an encoding of a state $\rho$, QSP enables the evaluation of nonlinear functions of the form $\text{tr}(P(\rho))$ for a polynomial $P(x)$, which encompasses relevant properties like entropies and fidelity. However, QSP is a sequential algorithm: implementing a degree-$d$ polynomial necessitates $d$ queries to the encoding, equating to a query depth $d$. Here, we reduce the depth of these property estimation algorithms by developing Parallel Quantum Signal Processing. Our algorithm parallelizes the computation of $\text{tr} (P(\rho))$ over $k$ systems and reduces the query depth to $d/k$, thus enabling a family of time-space tradeoffs for QSP. This furnishes a property estimation algorithm suitable for distributed quantum computers, and is realized at the expense of increasing the number of measurements by a factor $O( \text{poly}(d) 2^{O(k)} )$. We achieve this result by factorizing $P(x)$ into a product of $k$ smaller polynomials of degree $O(d/k)$, which are each implemented in parallel with QSP, and subsequently multiplied together with a swap test to reconstruct $P(x)$. We characterize the achievable class of polynomials by appealing to the fundamental theorem of algebra, and demonstrate application to canonical problems including entropy estimation and partition function evaluation.