2012 journal article

The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system

Biomaterials, 33(7), 2032–2040.

By: S. Heydarkhan-Hagvall*, J. Gluck*, C. Delman*, M. Jung*, N. Ehsani*, S. Full*, R. Shemin*

Contributors: S. Heydarkhan-Hagvall*, J. Gluck*, C. Delman*, M. Jung*, N. Ehsani*, S. Full*, R. Shemin*

author keywords: Extracellular matrix; Niche; Cardiovascular tissue engineering; Stem cell; Scaffold
MeSH headings : Animals; Biocompatible Materials / metabolism; Cell Culture Techniques / methods; Cell Differentiation / physiology; Cell Proliferation; Cells, Cultured; Collagen Type IV / metabolism; Embryonic Stem Cells / cytology; Embryonic Stem Cells / physiology; Extracellular Matrix / metabolism; Fibronectins / metabolism; Heart / embryology; Humans; Laminin / metabolism; Mice; Myocardium / cytology; Tissue Engineering / methods; Vascular Endothelial Growth Factor Receptor-2 / genetics; Vascular Endothelial Growth Factor Receptor-2 / metabolism; Vitronectin / metabolism
TL;DR: The results show the importance of defined culture systems in vitro for studying the guided differentiation of pluripotent embryonic stem cells in the field of cardiovascular tissue engineering and regenerative medicine. (via Semantic Scholar)
Source: ORCID
Added: August 20, 2019

While stem cell niches in vivo are complex three-dimensional (3D) microenvironments, the relationship between the dimensionality of the niche to its function is unknown. We have created a 3D microenvironment through electrospinning to study the impact of geometry and different extracellular proteins on the development of cardiac progenitor cells (Flk-1(+)) from resident stem cells and their differentiation into functional cardiovascular cells. We have investigated the effect of collagen IV, fibronectin, laminin and vitronectin on the adhesion and proliferation of murine ES cells as well as the effects of these proteins on the number of Flk-1(+) cells cultured in 2D conditions compared to 3D system in a feeder free condition. We found that the number of Flk-1(+) cells was significantly higher in 3D scaffolds coated with laminin or vitronectin compared to colIV-coated scaffolds. Our results show the importance of defined culture systems in vitro for studying the guided differentiation of pluripotent embryonic stem cells in the field of cardiovascular tissue engineering and regenerative medicine.