2008 review

Transgenic Arabidopsis Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling

[Review of ]. PLANT CELL, 20(10), 2876–2893.

By: I. Perera n, C. Hung n, C. Moore n, J. Stevenson-Paulik* & W. Boss n

MeSH headings : Abscisic Acid / metabolism; Abscisic Acid / pharmacology; Animals; Arabidopsis / drug effects; Arabidopsis / genetics; Arabidopsis / physiology; Calcium / metabolism; Droughts; Gene Expression Profiling; Inositol Polyphosphate 5-Phosphatases; Oligonucleotide Array Sequence Analysis; Phosphoric Monoester Hydrolases / metabolism; Plants, Genetically Modified / metabolism; Signal Transduction; Water / metabolism
TL;DR: The results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of theInsP3 signal reveals unanticipated interconnections between signaling pathways. (via Semantic Scholar)
UN Sustainable Development Goal Categories
2. Zero Hunger (Web of Science)
6. Clean Water and Sanitation (OpenAlex)
13. Climate Action (Web of Science)
Source: Web Of Science
Added: August 6, 2018

AbstractThe phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP3) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP3-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca2+ responses to a cold or salt stimulus were reduced by ∼30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP3 is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP3 signal reveals unanticipated interconnections between signaling pathways.