1997 journal article

Water treatment and waste characterization evaluation of an intensive recirculating fish production system

Aquacultural Engineering, 16(3), 133–147.

By: J. Twarowska n, P. Westerman n & T. Losordo n

TL;DR: A combination of two different technologies used for fish production was evaluated at the North Carolina State University (NCSU) Fish Barn facility, and six efficiency tests showed variability in concentrations and TAN removal rates by the biofilter. (via Semantic Scholar)
UN Sustainable Development Goal Categories
6. Clean Water and Sanitation (OpenAlex)
14. Life Below Water (Web of Science)
Source: NC State University Libraries
Added: August 6, 2018

A combination of two different technologies used for fish production was evaluated at the North Carolina State University (NCSU) F̀ish Barn facility. The combined system included the ECOFISH∗ tank, developed at the Norwegian Hydrotechnical Laboratory (NHL) at SINTEF (Trondheim, Norway) and water treatment and recycle technology designed at NCSU. Approximately 2170 fingerling tilapia (Oreochromis niloticus, Oreochromis niloticus × Oreochromis aureus) were grown from 3.6 to 507 g in 177 days in a 20 m3 four-zone tank. The system design included patented particle traps at the bottom of each zone to remove feed waste and excrement, sludge collectors where the removed particles settled, a rotating screen filter for suspended solids removal, a high-rate linear-path trickling biological filter for nitrification, and two down-flow columns for oxygen injection. The measured suspended solids level in the tank zones were usually less than 7.5 mg l −1. Based on six efficiency tests with a mean total ammonia nitrogen (TAN) concentration in the culture tank of 0.62 mg l −1, the biofilter removed approximately 65% on a single pass through the filter, with an average removal rate per unit of filter surface area of 0.33 g TAN m −2 day −1. Sampling every 4 h over a 24-h period showed variability in concentrations and TAN removal rates by the biofilter. Six efficiency tests on the sludge collectors and the screen filter showed 80% and 41% suspended solids removal efficiency, respectively, based on the influent and effluent concentrations. On a daily basis, the sludge collectors and the screen filter each removed about 18% of feed volatile solids input, respectively, based on three 24-h periods studied. Fresh water use averaged approximately 1500 l day −1, which was about 7% of the system volume.