2020 journal article

Engineering a Unified Dielectric Solution for AlGaN/GaN MOS-HFET Gate and Access Regions

IEEE TRANSACTIONS ON ELECTRON DEVICES, 67(3), 881–887.

By: F. Azam n, A. Tanneeru n, B. Lee n & V. Misra n

author keywords: AlGaN/GaN; atomic layer deposition (ALD); current collapse; HfO2; high electron mobility transistor (HEMT); high-k; high-temperature reverse bias (HTRB); hydroxyl; interface; MOS; HFET; oxidant; reliability; traps
Source: Web Of Science
Added: April 14, 2020

Typically GaN metal-oxide-semiconductor heterojunction-field-effect transistors (MOS-HFETs) have used two separate dielectrics for the gate and access regions. However, as this article shows, with proper gate-stack engineering, a unified dielectric solution can be achieved for the transistor. HfO<sub>2</sub> dielectrics were deposited by atomic layer deposition (ALD). Two types of oxidants were investigated, namely, water (H<sub>2</sub>O) and ozone (O<sub>3</sub>). It was found that MOS-HFETs with O<sub>3</sub> oxidant yielded lower threshold voltage (<inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula>) shifts, higher maximum drain current (<inline-formula> <tex-math notation="LaTeX">${I}_{\text {DS,max}}$ </tex-math></inline-formula>) of 340 mA/mm, 20% lower ON-resistance (<inline-formula> <tex-math notation="LaTeX">${R}_{ {\mathrm {\scriptscriptstyle {ON}}}}$ </tex-math></inline-formula>), higher peak transconductance at 112.66 mS/mm, lower hysteresis, and lower gate leakage (<inline-formula> <tex-math notation="LaTeX">${5.4} \times {10}^{-{6}}$ </tex-math></inline-formula> A/cm<sup>2</sup>) compared to water oxidant based MOS-HFETs with <inline-formula> <tex-math notation="LaTeX">${I}_{\text {DS},\text {max}}$ </tex-math></inline-formula> of 240 mA/mm, 81.38 mS/mm peak transconductance, and <inline-formula> <tex-math notation="LaTeX">${1.7} \times {10}^{-{4}}$ </tex-math></inline-formula> A/cm<sup>2</sup> gate leakage. DC/RF dispersion tests showed MOS-HFETs with O<sub>3</sub> oxidant had ~200<inline-formula> <tex-math notation="LaTeX">$\times $ </tex-math></inline-formula> better current collapse recovery. Temperature characterization and reliability test results, such as high-temperature reverse bias (HTRB), are published for the first time on ALD-HfO<sub>2</sub>/AlGaN/GaN MOS-HFETs using tetrakis(dimethylamino)hafnium (TDMAH) and O<sub>3</sub> precursor. Using an ozone oxidant provided more stability (i.e., less variability in <inline-formula> <tex-math notation="LaTeX">${R}_{ {\mathrm {\scriptscriptstyle {ON}}}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula>) as a function of temperature. Finally, when devices were electrically stressed in the OFF-state, the HTRB test showed minimal <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> drift (<0.5 V) in the case of O<sub>3</sub> oxidant versus much larger <inline-formula> <tex-math notation="LaTeX">${V}_{\text {TH}}$ </tex-math></inline-formula> drift (2.5 V) in the case of H<sub>2</sub>O oxidant.