2009 article

Overexpression of a directed mutant of 14-3-3 omega in Arabidopsis leaves affects phosphorylation and protein content of nitrate reductase

Oh, M.-H., Huber, J. L., Shen, W., Athwal, G. S., Wu, X., & Huber, S. C. (2009, July). BOTANY, Vol. 87, pp. 691–701.

author keywords: Arabidopsis thaliana; 14-3-3 protein; beta-glucosidase; glutathione S-transferase; two-dimensional difference gel electrophoresis; site-directed mutagenesis
TL;DR: This work generated transgenic Arabidopsis plants constitutively overexpressing a directed mutant of 14-3-3 isoform ω that inhibits phosphorylated nitrate reductase (pNR) in a largely divalent-cation-independent manner in vitro. (via Semantic Scholar)
UN Sustainable Development Goal Categories
Source: Web Of Science
Added: August 6, 2018

The 14-3-3 family of proteins are highly conserved signaling proteins in eukaryotes that bind to their client proteins, usually through specific phosphorylated target sequences. While the 14-3-3 proteins are thought to interact with a wide array of cellular proteins, there have been few studies addressing the in-vivo role of 14-3-3. As one approach to study this in-vivo role, we generated transgenic Arabidopsis plants constitutively overexpressing a directed mutant of 14-3-3 isoform ω that inhibits phosphorylated nitrate reductase (pNR) in a largely divalent-cation-independent manner in vitro. The transgenic plants had increased relative phosphorylation of NR at the regulatory Ser-534 site and decreased NR activity measured in the presence of 5 mmol·L–1 MgCl2 relative to nontransgenic plants. In addition, total NR protein was increased and the protein half-life was increased about two-fold. Two-dimensional difference gel electrophoresis analysis of proteins extracted from leaves of plants expressing the mutant 14-3-3 identified numerous cellular proteins that were altered in abundance. In particular, several β-glucosidase and glutathione S-transferase isoforms were decreased in abundance relative to wild type plants suggesting a possible alteration in stress or defense responses.