2020 journal article

Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA

FORESTS, 11(11).

author keywords: ants; arachnids; bioenergy; downed wood; invertebrates; insects; logging residue; woody biomass
TL;DR: Woody debris in harvested sites is important for the conservation of a majority of the taxa studied, which is likely because of the unique microclimate offered near/under woody debris. (via Semantic Scholar)
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
13. Climate Action (Web of Science)
15. Life on Land (Web of Science)
Source: Web Of Science
Added: December 14, 2020

Invertebrates, especially those dependent on woody debris for a portion of their life cycle, may be greatly impacted by the amount of downed wood retained following timber harvests. To document relationships between invertebrates and logging residues, we sampled invertebrates with pitfall traps placed near or far from woody debris in 10 recently (2013–2015) harvested sites in western North Carolina with varying levels of woody debris retention. We measured the groundcover and microclimate at each trap and estimated site-level woody debris volume. We modeled predictors (e.g., site-level woody debris volume, percent woody debris cover at the trap site, site type) of captures of spiders (Araneae), harvestmen (Opiliones), centipedes/millipedes (Chilopoda/Diplopoda), ground beetles (Carabidae), rove beetles (Staphylinidae), other beetles, ants (Formicidae), grasshoppers (Acrididae/Tetrigidae), crickets (Gryllidae), and cave crickets (Rhaphidophoridae). In addition, we modeled ant occurrence at a finer taxonomic resolution, including red imported fire ants (Solenopsis invicta Buren) and 13 other genera/species. Forest type, whether hardwood or white pine (Pinus strobus L.) overstory preharvest, was a predictor of invertebrate response for 21 of 24 taxonomic analyses. Invertebrate captures or the occurrence probability of ants increased with increasing site-level woody debris volume for 13 of the 24 taxa examined and increased with increasing coarse woody debris (CWD; diameter ≥ 10 cm) cover at the trap level for seven of 24 taxa examined. Our results indicate that woody debris in harvested sites is important for the conservation of a majority of the taxa we studied, which is likely because of the unique microclimate offered near/under woody debris. Stand-scale factors typically were more important predictors of invertebrate response than trap-level cover of woody debris. We recommend implementing sustainability strategies (e.g., Biomass Harvesting Guidelines) to retain woody debris scattered across harvested sites to aid in the conservation of invertebrates.