2021 journal article

Textile-Based Pressure Sensors for Monitoring Prosthetic-Socket Interfaces

IEEE Sensors Journal, 21(7), 9413–9422.

author keywords: Sensors; Sensor arrays; Sensor systems; Sockets; Monitoring; Data collection; Capacitive sensors; Pressure sensors; capacitive sensors; sensor arrays; body system networks; sensor systems and applications; textiles; wearable sensors; flexible electronics; prosthetics
TL;DR: This work presents a capacitive pressure sensor fabricated through a simple, and scalable sewing process using commercially available conductive yarns and textile materials that provides a soft, flexible, and comfortable sensing system for monitoring the inner socket environment (ISE). (via Semantic Scholar)
UN Sustainable Development Goal Categories
Source: ORCID
Added: March 5, 2021

Amputees are prone to experiencing discomfort when wearing their prosthetic devices. As the amputee population grows this becomes a more prevalent and pressing concern. There is a need for new prosthetic technologies to construct more comfortable and well-fitted liners and sockets. One of the well-recognized impediments to the development of new prosthetic technology is the lack of practical inner socket sensors to monitor the inner socket environment (ISE), or the region between the residual limb and the socket. Here we present a capacitive pressure sensor fabricated through a simple, and scalable sewing process using commercially available conductive yarns and textile materials. This fully-textile sensor provides a soft, flexible, and comfortable sensing system for monitoring the ISE. We provide details of our low-power sensor system capable of high-speed data collection from up to four sensor arrays. Additionally, we demonstrate two custom set-ups to test and validate the textile-based sensors in a simulated prosthetic environment. Finally, we utilize the textile-based sensors to study the ISE of a bilateral transtibial amputee. Results indicate that the textile-based sensors provide a promising potential for seamlessly monitoring the ISE.