2013 journal article

Tritrophic effects of plant growth regulators in an aphid-parasitoid system

BIOLOGICAL CONTROL, 66(1), 72–76.

By: S. Prado n & S. Frank n

author keywords: Aphidius colemani; Biological control; Fitness; Myzus persicae; Percent emergence; Sex ratio; Size
TL;DR: It is shown that PGRs can negatively affect parasitoid fitness, and reduce parasitism, suggesting the potential for negative long-term effects on the efficacy of biological control. (via Semantic Scholar)
UN Sustainable Development Goal Categories
2. Zero Hunger (Web of Science)
13. Climate Action (Web of Science)
15. Life on Land (Web of Science)
Source: Web Of Science
Added: August 6, 2018

Plant growth regulators (PGRs) have the potential to negatively affect the outcome of biological control via plant architectural changes and plant chemical changes. Despite studies demonstrating the negative effects of PGRs on herbivore survival and development, to date, no studies have investigated the tritrophic effects of PGRs on parasitoid life history traits. In this study we investigated the effect of four commonly used PGRs on Myzus persicae abundance and suppression, and Aphidius colemani fitness in a greenhouse experiment. None of the PGRs reduced aphid abundance alone or affected aphid suppression by A. colemani. However, paclobutrazol reduced the number of mummies that developed on plants. PGRs had a range of negative effects on parasitoid fitness. No adult parasitoids eclosed from mummies on ancymidol treated plants. Paclobutrazol reduced parasitoid size, and paclobutrazol and uniconazole reduced female:total ratio. This study shows that PGRs can negatively affect parasitoid fitness, and reduce parasitism, suggesting the potential for negative long-term effects on the efficacy of biological control.