2021 journal article
Identification of potential causative agents of the CO2-mediated bloater defect in low salt cucumber fermentation
INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 344.
Development of bloater defect in cucumber fermentations is the result of carbon dioxide (CO 2 ) production by the indigenous microbiota. The amounts of CO 2 needed to cause bloater defect in cucumber fermentations brined with low salt and potential microbial contributors of the gas were identified. The carbonation of acidified cucumbers showed that 28.68 ± 6.04 mM (12%) or higher dissolved CO 2 induces bloater defect. The microbiome and biochemistry of cucumber fermentations (n = 9) brined with 25 mM calcium chloride (CaCl 2 ) and 345 mM sodium chloride (NaCl) or 1.06 M NaCl were monitored on day 0, 2, 3, 5, 8, 15 and 21 using culture dependent and independent microbiological techniques and High-Performance Liquid Chromatography. Changes in pH, CO 2 concentrations and the incidence of bloater defect were also followed. The enumeration of Enterobacteriaceae on Violet Red Bile Glucose agar plates detected a cell density of 5.2 ± 0.7 log CFU/g on day 2, which declined to undetectable levels by day 8. A metagenomic analysis identified Leuconostocaceae in all fermentations at 10 to 62%. The presence of both bacterial families in fermentations brined with CaCl 2 and NaCl coincided with a bloater index of 24.0 ± 10.3 to 58.8 ± 23.9. The prevalence of Lactobacillaceae in a cucumber fermentation brined with NaCl with a bloater index of 41.7 on day 5 suggests a contribution to bloater defect. This study identifies the utilization of sugars and malic acid by the cucumber indigenous Lactobacillaceae, Leuconostocaceae and Enterobacteriaceae as potential contributors to CO 2 production during cucumber fermentation and the consequent bloater defect.