2012 journal article

Sedimentary processes, on the Mekong subaqueous delta: Clay mineral and geochemical analysis

JOURNAL OF ASIAN EARTH SCIENCES, 79, 520–528.

By: Z. Xue n, J. Liu n, D. DeMaster n, E. Leithold n, S. Wan*, Q. Ge*, V. Nguyen, T. Ta

author keywords: South China Sea; Mekong River Delta; Clay mineralogy; Organic carbon; Depositional environment
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
13. Climate Action (Web of Science)
14. Life Below Water (Web of Science; OpenAlex)
Source: Web Of Science
Added: August 6, 2018

Sedimentary processes on the inner Mekong Shelf were investigated by examining the characteristics of sediments sampled in gravity cores at 15 locations, including grain size, clay mineralogy, sediment accumulation rates, and the elemental and stable carbon isotopic composition of organic matter (atomic C/N ratios and δ13C). Deltaic deposits exhibit contrasting characteristics along different sides of the delta plain (South China Sea, SCS hereafter, to the east and Gulf of Thailand, GOT hereafter, to the west) as well as on and off the subaqueous deltaic system. On one hand, cores recovered from the subaqueous delta in the SCS/GOT are consisted of poorly/well sorted sediments with similar/different clay mineral assemblage with/from Mekong sediments. Excess 210Pb profiles, supported by 14C chronologies, indicate either “non-steady” (SCS side) or “rapid accumulation” (GOT side) processes on the subaqueous delta. The δ13C and C/N ratio indicate a mixture of terrestrial and marine-sourced organic matter in the deltaic sediment. On the other hand, cores recovered from areas with no deltaic deposits or seaward of the subaqueous delta show excess 210Pb profiles indicating “steady-state” accumulation with a greater proportion of marine-sourced organic matter. Core analysis’s relevance with local depositional environment and previous acoustic profiling are discussed.