2020 conference paper

Turning Disaster into Knowledge: Geotechnical Aspects of the 2018 Mw 7.1 Anchorage Alaska Earthquake

ASCE Geotechnical Special Publication: Proceedings from ASCE GeoCongress. Presented at the ASCE GeoCongress 2020, Minneapolis, MN.

Event: ASCE GeoCongress 2020 at Minneapolis, MN on February 25-28, 2020

UN Sustainable Development Goal Categories
13. Climate Action (OpenAlex)
Source: NC State University Libraries
Added: July 28, 2021

The moment magnitude (Mw) 7.1 Anchorage, Alaska, earthquake on November 30, 2018 is one of the largest earthquakes to strike near a major U.S. city since the 1994 Northridge earthquake. No fatalities were reported, but the earthquake caused widespread power outages, structural damage to residential buildings, damage to roadways and railways, and ground failures. This paper presents a summary of preliminary findings by the NSF-sponsored Geotechnical Extreme Events Reconnaissance (GEER) team. Damage was characterized using a combination of on-ground site mapping and aerial reconnaissance with state-of-art geomatics technology and photogrammetry. Recorded peak ground accelerations (PGA) at most stations range between 0.2 g and 0.3 g, with a few sites in the central and southeastern vicinities of Anchorage with PGA greater than 0.5 g. The duration of strong shaking from the M 7.1 event may not have been enough to initiate substantial movements on the majority of the historic landslides from the 1964 M 9.2 earthquake, including the slides at the Turnagain Heights and 4th Avenue. However, liquefaction appeared to have contributed to re-mobilization of the 1964 Potter Hill (Rabbit Creek) landslide. While the majority of the damage observed in Anchorage and surrounding communities appeared to be non-structural, the isolated cases of structural damage seemed to be caused by geotechnical issues, particularly settlement of the foundation and/or slope deformations.