2014 journal article
IMPROVED PROTOCOL FOR ALKALINE NITROBENZENE OXIDATION OF WOODY AND NON-WOODY BIOMASS
JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, 35(1), 52–61.
The protocol of alkaline nitrobenzene oxidation was investigated to improve its ability to identify the different lignin structures for both woody and non-woody biomass. The survival factors of all six oxidation products—syringaldehde (Sr), vanillin (V), p-hydroxybenzaldehyde (B) and their corresponding acids, syringic acid (Sa), vanillic acid (Va), and p-hydroxybenzoic acid (Ba)—were studied at 170, 180, and 190°C for several residence times. Under similar conditions, various lignin model compounds—a softwood (loblolly pine), a hardwood (red maple), and a non-wood raw material (corn stover)—were oxidized. Molar yields of oxidation products were determined and the ratios of (Sr+Sa)/(V+Va), (Sr/V), and B/(V+Va) (B/V) were calculated. All oxidation products were relatively stable at 170 and 180°C but showed some degradation at 190°C, especially at long residence time. In all cases, p-hydroxybenzoic acid was barely detectable. While yields of oxidation products reach a maximum at 170°C for pine and maple, maximal yields of corn stover require 190°C. Consequently, we recommend that nitrobenzene oxidation be carried out at 170°C for 2.5 h for softwood and hardwood, but at 190°C and 4 h with correction for the survival factors for corn stover and other non-woody biomass. Alternatively, a protocol of oxidation at two temperatures is recommended for non-woody biomass.