2014 journal article
Modeling genetic effects on growth of diverse provenances and families of loblolly pine across optimum and deficient nutrient regimes
CANADIAN JOURNAL OF FOREST RESEARCH, 44(11), 1453–1461.
Optimal deployment of improved loblolly pine (Pinus taeda L.) planting stock in the southeastern United States requires knowing how diverse seed sources and families perform over time across the wide range of sites used for plantations. This study tests if the relative growth performance of provenances and families is the same at the individual-tree and stand levels for family block plantings and determines what type of adjustment may be required to account for genetic differences when modeling growth and yield. Ten open-pollinated families from two very different provenances, Atlantic Coastal Plain and “Lost Pines” Texas, were grown in single-family block plots to test for growth differences between provenances and among families under severely deficient and optimal nutrition regimes on a nutrient-deficient, dry site. The three-parameter Chapman–Richards function was fit to plot means over time by provenance, family, and nutrition treatments. Models with provenance- or family-specific parameters of the Chapman–Richards function were tested for significant improvement over global parameters. At age 14 years, family, provenance, and nutrition treatments all significantly affected individual-tree growth traits of height, diameter, and volume. Significant nutrition by provenance interactions were found for stand-level traits of basal area per hectare and volume per hectare. Family differences were also significant for these traits. Provenance- or family-specific asymptotic parameters accounted for differences in growth over time. Several traits required the use of local asymptotic and rate parameters in the fertilized treatment only. For modeling growth, a multiplier would be sufficient to account for genetic effects on the majority of traits.