2021 article
Photodriven Elimination of Chlorine From Germanium and Platinum in a Dinuclear Pt-II -> Ge-IV Complex
Karimi, M., Tabei, E. S., Fayad, R., Saber, M. R., Danilov, E. O., Jones, C., … Gabbai, F. P. (2021, September 8). ANGEWANDTE CHEMIE-INTERNATIONAL EDITION.
AbstractSearching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o‐(Ph2P)C6H4)2GeIVCl2]PtIICl2 and [(o‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtII and GeIII–PtIII isomers, respectively. Conversion of the GeIV–PtII isomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIII isomer point to a ligand arene–Cl. charge‐transfer complex as an intermediate.