2021 journal article
Decoding ionic conductivity and reordering in cation-disordered pyrochlores
The ordered structure A 2 B 2 O 6 O’ in pyrochlores engenders twin rows of inequivalent anion sublattices each centred on alternating cations. While it is known that cation antisite disorder augments the ionic conductivity by several orders of magnitude, the local cation environment around the anions and the dynamic anion reordering during the cation disordering are not well-elucidated. Using atomistic simulations on Gd 2 Zr 2 O 7 , we first show that the anions engage in concerted hops to the neighbouring tetrahedral sites mostly along with the 〈1 0 0〉 direction while completely avoiding the octahedral sites. While the initially vacant 8 a sites start accommodating oxygen ions with increasing cation disorder, they show noticeable reluctance even at significant levels of disorder. We have also tracked both the distribution of available oxygen sites following random cation disorder, which is dependent only on cation disordering, and the probability of occupation of these sites. Interestingly, the available oxygen sites show a non-monotonic dependence on the number of B ions in the nearest neighbouring shell while the occupation probability of all the available oxygen sites increases monotonically. A tetrahedral oxygen site thus has a better probability of being occupied when it has a greater number of second neighbour B ions. This article is part of the Theo Murphy meeting issue 'Understanding fast-ion conduction in solid electrolytes'.