2015 journal article

Crop Utilization of Nitrogen in Swine Lagoon Sludge

COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 46(12), 1525–1539.

author keywords: water quality; soil fertility; Nitrogen
UN Sustainable Development Goal Categories
2. Zero Hunger (Web of Science)
13. Climate Action (Web of Science)
14. Life Below Water (OpenAlex)
15. Life on Land (Web of Science)
Source: Web Of Science
Added: August 6, 2018

Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha−1 and the optimum N rate for corn at one location was 327 kg total sludge N ha−1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha−1, respectively, on a whole-plant basis and 2 and 10 kg N ha−1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha−1). From the 327 kg ha−1 of sludge N applied to corn, 249 kg N ha−1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha−1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha−1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.