2021 journal article

Role of the Mn-Catalase in Aerobic Growth of Lactobacillus plantarum ATCC 14431

Applied Microbiology.

By: T. Peacock n & H. Hassan n

TL;DR: The physiological role of Mn-catalase (MnKat) in Lactobacillus plantarum ATCC 14431 is investigated and showed that the MnKat is critical for aerobic growth, protection against H2O2, and maintenance of the rod-shaped cell morphology under aerobic conditions. (via Semantic Scholar)
Source: ORCID
Added: December 21, 2021

Lactobacilli are Gram-positive aerotolerant organisms that comprise the largest genus of Lactic Acid Bacteria (LAB). Most lactobacilli are devoid of the antioxidant enzymes, superoxide dismutases, and catalases, required for protection against superoxide radicals and hydrogen peroxide (H2O2), respectively. However, some lactobacilli can accumulate millimolar concentrations of intracellular manganese and spare the need for superoxide dismutase, while others possess non-heme catalases. L. plantarum is associated with plant materials and plays an important role in fermented foods and gut microbiomes. Therefore, understanding the effects of the environment on the growth and survival of this organism is essential for its success in relevant industrial applications. In this report, we investigated the physiological role of Mn-catalase (MnKat) in Lactobacillus plantarum ATCC 14431. To this end, we compared the physiological and morphological properties of a ΔMnkat mutant strain and its isogenic parental strain L. plantarum ATCC 14431. Our data showed that the MnKat is critical for the growth of L. plantarum ATCC 14431 in the presence of oxygen and resistance to H2O2. The aerobic growth of the mutant in presence or absence of H2O2 was improved in the Mn-rich medium (APT) as compared to the growth in MRS medium. Furthermore, under aerobic conditions the mutant strain possessed atypical cellular morphology (i.e., shorter, and fatter). In conclusion, the MnKat of L. plantarum ATCC 14431 is important for aerobic growth, protection against H2O2, and maintenance of the rod-shaped cell morphology under aerobic conditions.