2021 journal article
Impact of Nitrate and Ammonium Ratios on Flowering and Asexual Reproduction in the Everbearing Strawberry Cultivar Fragaria x ananassa Albion
HORTICULTURAE, 7(12).
Ever-bearing (EB) strawberries are long-day cultivars that show perpetual flowering behavior. Compared to June-bearing short-day cultivars, EB cultivars can initiate flowers with less dependency on light and temperature levels. This leads to a more consistent flowering and fruiting pattern, making EB cultivars favorable for areas with long growing seasons. However, this flowering pattern also brings significant challenges to open-field strawberry nurseries. Consistent flower development in EB cultivars frequently leads to increased labor cost for manual flower removal on nursery ground. The alteration of flowering behavior via fertilizer regimes could be a cost-effective tool for strawberry nurseries. However, while it is known that the source of nitrogen (N) impacts strawberry flowering, its effect on strawberry propagation rates needs further investigation. The objective of this study was to investigate the impact of nitrate (NO3−) to ammonium (NH4+) ratio on flower and daughter plant production in the EB strawberry cultivar ‘Albion’ (Fragaria × ananassa c.v. ‘Albion’). Strawberry plants were grown in a completely randomized design under greenhouse conditions (26.6 °C, 16 h photoperiod). Four treatments of NO3−:NH4+ were implemented: (1) 100%:0%; (2) 80%:20%; (3) 60%:40%; (4) 50%:50%. Strawberry plants fertilized with a 60%:40% NO3−:NH4+ ratio produced 17–31% fewer inflorescences than those fertilized with 100%:0% (8.8 ± 1.19) and 80%:20% (10.3 ± 1.85) ratios. The production of daughter plants remained similar in all four treatments. Our results show that increased ratios of ammonium in combination with decreased ratios of nitrate reduce flowering of EB strawberry cultivars, while propagation rates remain consistent. These results could potentially lead to the development of fertilizer regimes for strawberry nurseries to reduce flower production in EB cultivars.