2021 journal article

Reduction-Sensitive Dextran–Paclitaxel Polymer–Drug Conjugate: Synthesis, Self-Assembly into Nanoparticles, and In Vitro Anticancer Efficacy

Bioconjugate Chemistry, 32(12), 2516–2529.

By: S. Kanwal*, M. Naveed*, A. Arshad*, A. Arshad*, F. Firdous*, A. Faisal*, B. Yameen*

MeSH headings : Paclitaxel
TL;DR: The developed PDC with its unique ability to self-assemble into NPs and stimuli-responsive drug release can enhance the success of the NP-based drug delivery systems during clinical translation. (via Semantic Scholar)
UN Sustainable Development Goal Categories
3. Good Health and Well-being (OpenAlex)
Source: ORCID
Added: January 21, 2022

Delivery systems that can encapsulate a precise amount of drug and offer a spatiotemporally controlled drug release are being actively sought for safe yet effective cancer therapy. Compared to polymer nanoparticle (NP)-based delivery systems that rely on physical drug encapsulation, NPs derived from stimuli-sensitive covalent polymer-drug conjugates (PDCs) have emerged as promising alternatives offering precise control over drug dosage and spatiotemporal drug release. Herein, we report a reduction-sensitive PDC "Dex-SS-PTXL" synthesized by conjugating dextran and paclitaxel (PTXL) through a disulfide bond-bearing linker. The synthesized Dex-SS-PTXL PDC with a precise degree of substitution in terms of the percentage of repeat units of dextran covalently conjugated to PTXL (27 ± 0.5%) and the amount of drug carried by the PDC (39 ± 1.4 wt %) was found to self-assemble into spherical NPs with an average size of 110 ± 34 nm and a ζ-potential of -14.09 ± 8 mV. The reduction-sensitive Dex-SS-PTXL NPs were found to release PTXL exclusively in response to the reducing agent concentration reflective of the intracellular reducing environment of the tumor cells. Challenging BT-549 and MCF-7 cells with Dex-SS-PTXL NPs revealed significant cytotoxicity, while the IC50 values and the mode of action (mitotic arrest) of Dex-SS-PTXL NPs were found to be comparable to those of free PTXL, highlighting the active nature of the intracellularly released drug. The developed PDC with its unique ability to self-assemble into NPs and stimuli-responsive drug release can enhance the success of the NP-based drug delivery systems during clinical translation.