2022 journal article

The evolution of thermal performance in native and invasive populations of Mimulus guttatus

Evolution Letters.

author keywords: Adaptive divergence; evolutionary ecology; invasion ecology; latitudinal gradient; niche conservatism; phenotypic cline; thermal performance curve; thermal tolerance
TL;DR: It is suggested that broad thermal tolerance, rather than rapid adaptation in the novel range, may promote invasion and is tested on populations of the yellow monkeyflower. (via Semantic Scholar)
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
13. Climate Action (Web of Science)
14. Life Below Water (Web of Science)
15. Life on Land (Web of Science; OpenAlex)
Source: ORCID
Added: February 15, 2022

AbstractThe rise of globalization has spread organisms beyond their natural range, allowing further opportunity for species to adapt to novel environments and potentially become invaders. Yet, the role of thermal niche evolution in promoting the success of invasive species remains poorly understood. Here, we use thermal performance curves (TPCs) to test hypotheses about thermal adaptation during the invasion process. First, we tested the hypothesis that if species largely conserve their thermal niche in the introduced range, invasive populations may not evolve distinct TPCs relative to native populations, against the alternative hypothesis that thermal niche and therefore TPC evolution has occurred in the invasive range. Second, we tested the hypothesis that clines of TPC parameters are shallower or absent in the invasive range, against the alternative hypothesis that with sufficient time, standing genetic variation, and temperature-mediated selection, invasive populations would re-establish clines found in the native range in response to temperature gradients. To test these hypotheses, we built TPCs for 18 native (United States) and 13 invasive (United Kingdom) populations of the yellow monkeyflower, Mimulus guttatus. We grew clones of multiple genotypes per population at six temperature regimes in growth chambers. We found that invasive populations have not evolved different thermal optima or performance breadths, providing evidence for evolutionary stasis of thermal performance between the native and invasive ranges after over 200 years post introduction. Thermal optimum increased with mean annual temperature in the native range, indicating some adaptive differentiation among native populations that was absent in the invasive range. Further, native and invasive populations did not exhibit adaptive clines in thermal performance breadth with latitude or temperature seasonality. These findings suggest that TPCs remained unaltered post invasion, and that invasion may proceed via broad thermal tolerance and establishment in already climatically suitable areas rather than rapid evolution upon introduction.