2022 journal article

A Distributed Gradient Approach for System Optimal Dynamic Traffic Assignment

IEEE Transactions on Intelligent Transportation Systems.

By: M. Mehrabipour n & A. Hajbabaie n

author keywords: Computational modeling; Computational complexity; Linear programming; Load modeling; Transportation; Loading; Heuristic algorithms; Distributed; system optimal; dynamic traffic assignment; sub-problem; decomposition
TL;DR: This study presents a distributed gradient-based approach to solve system optimal dynamic traffic assignment (SODTA) formulated based on the cell transmission model that distributes SODTA into local sub-problems, who find optimal values for their decision variables within an intersection. (via Semantic Scholar)
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
16. Peace, Justice and Strong Institutions (OpenAlex)
Source: ORCID
Added: April 21, 2022

This study presents a distributed gradient-based approach to solve system optimal dynamic traffic assignment (SODTA) formulated based on the cell transmission model. The algorithm distributes SODTA into local sub-problems, who find optimal values for their decision variables within an intersection. Each sub-problem communicates with its immediate neighbors to reach a consensus on the values of common decision variables. A sub-problem receives proposed values for common decision variables from all adjacent sub-problems and incorporates them into its own offered values by weighted averaging and enforcing a gradient step to minimize its objective function. Then, the updated values are projected onto the feasible region of the sub-problems. The algorithm finds high quality solutions in all tested scenarios with a finite number of iterations. The algorithm is tested on a case study network under different demand levels and finds solutions with at most a 5% optimality gap.