2022 journal article

Using Sodium Polyacrylate to Gel-Spin Lignin/Poly(Vinyl Alcohol) Fiber at High Lignin Content

POLYMERS, 14(13).

By: M. Biswas n & E. Ford n

author keywords: bio-based precursor; lignin; PVA fiber; green; eco-composites; process enhancement; gel aging elimination; continuous process
Source: Web Of Science
Added: July 18, 2022

Lignin is the world’s most naturally abundant aromatic polymer, which makes it a sustainable raw material for engineered polymers and fiber manufacturing. Dry-jet gel-spinning was used to fabricate poly(vinyl alcohol) (PVA) fibers having 30% or more of the lignin biopolymer. To achieve this goal, 0.45 wt.% of aqueous sodium polyacrylate (SPA, at 0.55 wt.% solids) was added to spinning dopes of PVA dissolved in dimethylsulfoxide (DMSO). SPA served to enable the spinning of fibers having high lignin content (i.e., above 30%) while eliminating the aging of as-spun gel fiber prior to elevated temperature drawing. SPA impedes the migration of acetone soluble lignin from the skin of as-spun gel fibers, because SPA is insoluble in acetone, which is also a nonsolvent coagulant for PVA. PVA fibers having 30% lignin exhibited the highest tenacity of 1.3 cN/dtex (centinewton/decitex) and specific modulus 35.7 cN/dtex. The drawn fiber of 70% lignin to PVA, showed tenacity and specific modulus values of 0.94 cN/dtex and 35.3 cN/dtex, respectively. Fourier Transform Infrared (FTIR) spectroscopy showed evidence of hydrogen bonding between lignin and PVA among the drawn fibers. The modification of PVA/lignin dopes with SPA, therefore, allowed for the fabrication of gel-spun biobased fibers without the previously required step of gel aging.