2022 journal article
Quantifying Aggravated Threats to Stormwater Management Ponds by Tropical Cyclone Storm Surge and Inundation under Climate Change Scenarios
CLIMATE, 10(10).
Stormwater management ponds (SMPs) protect coastal communities from flooding caused by heavy rainfall and runoff. If the SMPs are submerged under seawater during a tropical cyclone (TC) and its storm surge, their function will be compromised. Under climate change scenarios, this threat is exacerbated by sea level rise (SLR) and more extreme tropical cyclones. This study quantifies the impact of tropical cyclones and their storm surge and inundation on South Carolina SMPs under various SLR scenarios. A coupled hydrodynamic model calculates storm surge heights and their return periods using historical tropical cyclones. The surge decay coefficient method is used to calculate inundation areas caused by different return period storm surges under various SLR scenarios. According to the findings, stormwater management ponds will be aggravated by sea level rise and extreme storm surge. In South Carolina, the number of SMPs at risk of being inundated by tides and storm surges increases almost linearly with SLR, by 10 SMPs for every inch of SLR for TC storm surges with all return periods. Long Bay, Charleston, and Beaufort were identified as high-risk coastal areas. The findings of this study indicate where current SMPs need to be redesigned and where more SMPs are required. The modeling and analysis system used in this study can be employed to evaluate the effects of SLR and other types of climate change on SMP facilities in other regions.