2018 journal article

Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model

MSPHERE, 3(2).

By: J. Fletcher n, S. Erwin n, C. Lanzas n & C. Theriot n

author keywords: Clostridium difficile; amino acids; intestinal colonization; metabolomics; peptides; transcriptomics
MeSH headings : Amino Acids, Branched-Chain / metabolism; Animals; Anti-Bacterial Agents / administration & dosage; Carbohydrate Metabolism; Cecum / microbiology; Clostridioides difficile / metabolism; Clostridium Infections / metabolism; Clostridium Infections / microbiology; Female; Gastrointestinal Microbiome; Gene Expression Profiling; Male; Mass Spectrometry; Metabolome; Metabolomics; Mice; Mice, Inbred C57BL; Peptide Hydrolases / genetics; Proline / metabolism; Sequence Analysis, RNA; Transcriptome
TL;DR: The gut environment after antibiotics and during the initial stages of C. difficile colonization and infection is defined and amino acids, in particular, proline and branched-chain amino acids and carbohydrates decrease in abundance over time and that C.difficile gene expression is consistent with their utilization in vivo. (via Semantic Scholar)
Source: Web Of Science
Added: August 6, 2018

Clostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages of C. difficile colonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and that C. difficile gene expression is consistent with their utilization by the bacterium in vivo . We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential for C. difficile colonization and disease.