2018 journal article
Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model
MSPHERE, 3(2).
Clostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and transcriptomics to define the gut environment after antibiotics and during the initial stages of C. difficile colonization and infection. We show that amino acids, in particular, proline and branched-chain amino acids, and carbohydrates decrease in abundance over time and that C. difficile gene expression is consistent with their utilization by the bacterium in vivo . We employed an integrated approach to analyze the metabolome and transcriptome to identify associations between metabolites and transcripts. This highlighted the importance of key nutrients in the early stages of colonization, and the data provide a rationale for the development of therapies based on the use of bacteria that specifically compete for nutrients that are essential for C. difficile colonization and disease.