2023 article
Performance Based on Measurements from Individual-Tree Progeny Tests Strongly Predicts Early Stand Yield in Loblolly Pine
Shalizi, M. N., Walker, T. D., Heine, A. J., Payn, K. G., Isik, F., Bullock, B. P., & McKeand, S. E. (2023, February 3). FOREST SCIENCE.
Abstract To facilitate the utility of genetic improvement in loblolly pine, individual-tree volume (productivity) scores estimated from single-tree plot or row-plot progeny test designs were compared with stand-level volume per unit area from block plots. A large number of families representing a wide range of progeny test scores for volume were established in growth and yield trials to generalize the results to families created by the breeding program. Individual-tree volume scores from progeny tests strongly corresponded with stand-level volume from block plots, especially after accounting for site quality and the risk of fusiform rust disease. A ten-point increase in the volume score from progeny test data was estimated to increase stand-level volume by 3.9 m3 ha-1 at age 6 years. A prediction model is presented that includes a new statistic, rust risk index, which is the expected rust incidence for a family at a new site when the hazard of rust for a checklot can be estimated from historical data. The study results through age 6 years corroborate the Performance Rating System as effective in guiding family deployment decisions. The models presented are based on pre-crown closure data at 6 years and will be updated with older measurements as the study matures. Study Implications: The Performance Rating System (PRS™) has been a successful tool for presenting genetic merit of improved loblolly pine families for landowners and forest managers in a more coherent and standardized manner. This system can be easily applied in other forest tree improvement programs, because it makes genetic improvement user-friendly for silviculturists and forest managers. Landowners can use this system to make decisions for selecting improved families suited to their specific forest management objectives. Seed orchard and nursery managers also depend on the PRS to choose the families to produce and as a third-party verification to market their genetic merit to customers. This study demonstrates that higher stand-level volume per unit area can be achieved when forest managers plant fast growing families with low fusiform rust disease risk on productive sites. The combined effect of genetic improvement for productivity and fusiform rust disease resistance is significant on stand-level volume per unit area.