2001 journal article

Allocation of nitrogen and dry matter for two soybean genotypes in response to water stress during reproductive growth

JOURNAL OF PLANT NUTRITION, 24(6), 873–884.

By: R. Chipman n, C. Raper n & R. Patterson n

TL;DR: It appears that a sizeable component of the drought tolerance observed in field experiments for the PI plants may be attributed to root characteristics, and data suggest that the PI does not remobilize leaf nitrogen as readily as Deltapine. (via Semantic Scholar)
UN Sustainable Development Goal Categories
2. Zero Hunger (Web of Science)
6. Clean Water and Sanitation (OpenAlex)
Source: Web Of Science
Added: August 6, 2018

Drought stress significantly limits soybean [Glycine max (L.) Merr.] yield in the Southeastern United States. The Plant Introduction 416937 (PI), which has lower yields than adapted cultivars under favorable conditions but a relatively lesser yield reduction under water-stress conditions, has been identified as a potential source of drought avoidance germplasm. It is unclear whether the mechanism of drought avoidance is associated with shoot or root. Also unclear is the effect of the PI's restricted yield potential on the extent of its yield reduction in response to a water stress. To determine the differences in response between the PI and an adapted cultivar, Deltapine 105, to reproductive sink size and water stress, inoculated PI and Deltapine plants were grown in sand-filled pots in controlled-environment chambers. The fixed rooting volume of the pot culture restricts the influence that genotypic differences in rooting patterns may have in accessing soil water. During the 24-day period of pod development between R-3 and R-6 growth stages, plants were subjected to one of two water regimes, either well-watered or water-stressed to a leaf water potential of about −0.95 MPa. Within each water treatment, plants of both genotypes were depodded at the R3 stage to remove all pods (full depodding), one-half of the pods (partial depodding), or no pods (no depodding). Tissues of plants harvested at the R6 stage were separated, dried to a constant mass, weighed, and analyzed for nitrogen. Photosynthate production was calculated from dry matter and nitrogen content. Photosynthate production and nitrogen fixation by Deltapine plants were unaffected within a pod load by the mild water stress, but both photosynthate production and nitrogen fixation by the PI plants were diminished by the mild water stress except when a reproductive sink was absent. It thus appears that a sizeable component of the drought tolerance observed in field experiments for the PI plants may be attributed to root characteristics. Leaf nitrogen concentration decreased during water stress in Deltapine plants but not in the PI plants. Also, the decrease in nitrogen concentration in stems was greater in response to increased reproductive load for Deltapine plants than for the PI plants. These data suggest that the PI does not remobilize leaf nitrogen as readily as Deltapine.