2023 article

Ir-Ru Electrocatalysts Embedded in N-Doped Carbon Matrix for Proton Exchange Membrane Water Electrolysis

Huynh, T. B. N., Song, J., Bae, H. E., Kim, Y., Dickey, M. D. D., Sung, Y.-E., … Kwon, O. J. (2023, March 28). ADVANCED FUNCTIONAL MATERIALS.

By: T. Huynh*, J. Song*, H. Bae*, Y. Kim*, M. Dickey n, Y. Sung*, M. Kim*, O. Kwon*

co-author countries: Korea (Republic of) 🇰🇷 United States of America 🇺🇸
author keywords: Ir-Ru nanoparticles; N-doped carbon; oxygen evolution; porous transport layers; water electrolysis
Source: Web Of Science
Added: April 17, 2023

Abstract More active electrocatalysts for H 2 and O 2 evolution reactions, efficient membranes, and robust porous transport layers (PTL) are required for designing advanced proton exchange membrane water electrolysis (PEMWE) systems. An N‐doped carbon matrix is introduced in this study to surpass the existing Ti PTLs. One‐step pyrolysis results in the carbonization of polyaniline films to the N‐doped carbon matrix, simultaneous formation of desiccation cracks and Ir x Ru y nanoparticles, and partial impregnation of the synthesized particles into the carbon matrix. The embedded Ir x Ru y nanoparticles are firmly bound to the surface of the carbon matrix, inhibiting the dissolution and detachment of the nanoparticles during the O 2 evolution reaction (OER). The cracks in the carbon matrix allow the steady transport of the produced O 2 , comparable to conventional PTLs. After optimizing the Ir and Ru contents of the nanoparticles based on the electrocatalytic performance, Ir 88 Ru 12 embedded in the N‐doped carbon matrix is found to be the most suitable catalyst for enhancing the OER performance of the PEMWE system with negligible degradation. These findings can potentially contribute to the industrial application of PEMWE. Relevant electrochemical systems with membrane electrode assemblies, such as fuel cells and CO 2 reduction systems, can be modified using the suggested structure.