2023 article

Macroscale modeling of electrostatically charged facemasks

Jamali, M., Atri, S., Gautam, S., Saleh, A. M., Tafreshi, H. V., & Pourdeyhimi, B. (2023, April 19). AEROSOL SCIENCE AND TECHNOLOGY.

By: M. Jamali n, S. Atri n, S. Gautam n, A. Saleh*, H. Tafreshi n  & B. Pourdeyhimi n 

co-author countries: United States of America πŸ‡ΊπŸ‡Έ
author keywords: Se-Jin Yook
Source: Web Of Science
Added: May 15, 2023

In this study, the instantaneous collection efficiency and pressure drop of an N95 facemask is numerically simulated in a setting similar (but not identical) to that used by NIOSH to certify N95 respirators. More specifically, a CPU-friendly macroscale model is developed, for the first time, to simulate the performance of an electrostatically-charged facemask when the mask is clean and when it is loaded with neutral or neutralized nanoparticles. The simulations were performed using ANSYS software enhanced with in-house subroutines, and they were calibrated using the experimental data reported in the literature for the initial efficiency of N95 masks. In addition, a correction factor was developed for the Kozeny-Carman permeability equation to expand its application to the case of nanoparticle-deposits, where the dendrites porosity is very high and the aerodynamic slip is expected to occur.