2023 journal article
Micropatterned Elastomeric Composites for Encapsulation of Transient Electronics
ACS NANO, 17(15), 14822–14830.
Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology. Nature-inspired micropatterns reduce the diffusion area for water molecules, and embedded nanoparticles impede water permeation, which synergistically enhances the water-barrier performance. Empirical and theoretical evaluations validate the encapsulation mechanisms under strains. Demonstration of a soft, degradable shield with an optical component under a biological solution highlights the potential applicability of the proposed encapsulation strategy.