2023 journal article

The interaction of O3 and CO2 concentration, exposure timing and duration on stem rust severity on winter wheat variety 'Coker 9553'


author keywords: Climate change; Elevated CO 2; Ozone; Stem rust; Wheat
UN Sustainable Development Goal Categories
13. Climate Action (Web of Science)
Source: Web Of Science
Added: August 28, 2023

Wheat rusts, elevated ozone (O3), and carbon dioxide (CO2) are simultaneously impacting wheat production worldwide, but their interactions are not well understood. This study investigated whether near-ambient O3 is suppressive or conducive to stem rust (Sr) of wheat, considering the interactions with ambient and elevated CO2. Winter wheat variety 'Coker 9553' (Sr-susceptible; O3 sensitive) was inoculated with Sr (race QFCSC) following pre-treatment with four different concentrations of O3 (CF, 50, 70, and 90 ppbv) at ambient CO2 levels. Gas treatments were continued during the development of disease symptoms. Disease severity, measured as percent sporulation area (PSA), significantly increased relative to the CF control only under near-ambient O3 conditions (50 ppbv) in the absence of O3-induced foliar injury. Disease symptoms at higher O3 exposures (70 and 90 ppbv) were similar to or less than the CF control. When Coker 9553 was inoculated with Sr while exposed to CO2 (400; 570 ppmv) and O3 (CF; 50 ppbv) in four different combinations, and seven combinations of exposure timing and duration, PSA significantly increased only under continuous treatment with O3 for six weeks or pre-inoculation treatment for three weeks, suggesting that O3-predisposes wheat to the disease rather than enhancing disease post-inoculation. O3 singly and in combination with CO2 increased PSA on flag leaves of adult Coker 9553 plants while elevated CO2 alone had little effect on PSA. These findings show that sub-symptomatic O3 conditions are conducive to stem rust, contradicting the current consensus that biotrophic pathogens are suppressed by elevated O3. This suggests that sub-symptomatic O3 stress may enhance rust diseases in wheat-growing regions.