2023 article

Assessing the Toxicity of Sea Salt to Early Life Stages of Freshwater Mussels: Implications for Sea Level Rise in Coastal Rivers

Mciver II, J. K., Cope, W. G., Bringolf, R. B., Kwak, T. J., Watson, B., Maynard, A., & Mair, R. (2023, September 20). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY.

By: J. Mciver II, W. Cope n, R. Bringolf*, T. Kwak n, B. Watson, A. Maynard, R. Mair*

co-author countries: United States of America 🇺🇸
author keywords: Sea salt toxicity; Climate change; Freshwater mussel; Median effect concentration (EC50); Acute toxicity; Salinization
Source: Web Of Science
Added: October 10, 2023

Sea levels across the planet are rising, particularly along the eastern coast of the United States. Climate-induced sea level rise can result in the inundation and intrusion of seawater into freshwater drainages. This would alter salinity regimes and lead to the salinization of coastal freshwater ecosystems. Increased salinity levels in freshwater can negatively affect freshwater-dependent species, including native mussels belonging to the order Unionida, which are highly sensitive to changes in water quality. Sea salt is largely made up of sodium and chloride ions, forming sodium chloride, a known toxicant to freshwater mussels. However, sea salt is a mixture that also contains other major ions, including potassium, sulfate, calcium, strontium, and magnesium, among others. Freshwater mussels exposed to sea salt would be exposed to each of the sea salt ions at the same time, resulting in a mixture toxicity effect. The mixture toxicity of these ions on early life stages of freshwater mussels is largely unknown because most research to date has evaluated individual salt ions in relative isolation. Therefore, we conducted acute toxicity tests on early life stages (glochidia and juvenile) of three freshwater mussel species that inhabit Atlantic Slope drainages (nonsalinity-adapted Atlanticoncha ochracea, salinity-adapted A. ochracea, Sagittunio nasutus, and Utterbackiana implicata). Glochidia and juveniles of each species were exposed to a control and six concentrations of Instant Ocean® Sea Salt (IOSS), a synthetic sea salt that closely resembles the ionic composition of natural sea salt. Exposure concentrations were 1 part(s) per thousand (ppt), 2 ppt, 8.5 ppt, 12.5 ppt, 17 ppt, and 34 ppt. We calculated the median effect concentration (EC50) for each of the eight acute toxicity tests and found that glochidia were more sensitive than juveniles to IOSS. At hour 24 EC50s for the glochidia ranged from 0.38 to 3.6 ppt, with the most sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 0.38 ppt (95% confidence interval [CI] 0.33-0.44). Juvenile freshwater mussels exhibited EC50s at hour 96 ranging from 5.0 to 10.4 ppt, with the least sensitive freshwater mussel being the nonsalinity-adapted A. ochracea, exhibiting an EC50 of 10.4 ppt (95% CI 9.1-12.0). Our results show that acute exposure to sea salt adversely affects freshwater mussel viability, particularly glochidia. This information can be used to enhance freshwater mussel conservation strategies in regions that are or will be impacted by climate-induced sea level rise and associated freshwater salinization. Environ Toxicol Chem 2023;42:2478-2489. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.