2013 journal article

Range-Wide Threats to a Foundation Tree Species from Disturbance Interactions

Madroño.

TL;DR: A rule-based spatial model is presented of the range-wide threat to tanoak populations from four disturbance factors that were parameterized to encode their additive effects and two-way interactions and can be extended to other species affected by these factors. (via Semantic Scholar)
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
15. Life on Land (OpenAlex)
Source: ORCID
Added: April 8, 2024

Abstract The geographic range of tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh (Fagaceae), encompasses tremendous physiographic variability, diverse plant communities, and complex disturbance regimes (e.g., development, timber harvest, and wildfire) that now also include serious threats posed by the invasive forest pathogen Phytophthora ramorum S. Werres, A.W.A.M. de Cock. Knowing where these disturbance factors interact is critical for developing comprehensive strategies for conserving the abundance, structure, and function of at-risk tanoak communities. In this study, we present a rule-based spatial model of the range-wide threat to tanoak populations from four disturbance factors that were parameterized to encode their additive effects and two-way interactions. Within a GIS, we mapped threats posed by silvicultural activities; disease caused by P. ramorum; human development; and altered fire regimes across the geographic range of tanoak, and we integrated spatially coinciding disturbances to quantify and map the additive and interacting threats to tanoak. We classified the majority of tanoak's range at low risk (3.7 million ha) from disturbance interactions, with smaller areas at intermediate (222,795 ha), and high (10,905 ha) risk. Elevated risk levels resulted from the interaction of disease and silviculture factors over small extents in northern California and southwest Oregon that included parts of Hoopa and Yurok tribal lands. Our results illustrate tanoak populations at risk from these interacting disturbances based on one set of hypothesized relationships. The model can be extended to other species affected by these factors, used as a guide for future research, and is a point of departure for developing a comprehensive understanding of threats to tanoak populations. Identifying the geographic location of disturbance interactions and risks to foundation species such as tanoak is critical for prioritizing and targeting conservation treatments with limited resources.