2023 article

Evaluation of a Formulation of <i>Bacillus subtilis</i> for Control of Phytophthora Blight of Bell Pepper

Hansel, J., Saville, A. C., & Ristaino, J. B. (2024, April 12). PLANT DISEASE.

By: J. Hansel n, A. Saville n & J. Ristaino n

author keywords: biocontrol; Phytophthora; oomycetes
Source: Web Of Science
Added: April 29, 2024

Phytophthora blight, caused by Phytophthora capsici, is one of the most economically significant diseases of bell pepper in the United States. Over the past several decades, isolates of P. capsici exhibiting resistance to mefenoxam and other fungicides have been reported. Fungicide resistance coupled with an increased market for organically grown crops has led to interest in biological control as a disease management option. In this work, an isolate of Bacillus subtilis (AFS032321) was evaluated for control of Phytophthora blight of bell pepper in the greenhouse and field. A 28% active ingredient wettable powder formulation of the strain was applied as a soil drench at transplanting prior to inoculation. Treatment with this formulation of B. subtilis significantly reduced the area under the disease progress curve (AUDPC) by up to 52% compared to untreated control plants in greenhouse tests. Comparisons between applying the biocontrol weekly after seeding for 5 weeks versus a single application at transplanting (5 weeks) indicated no significant benefits of additional applications. The formulation of B. subtilis reduced disease caused by a mefenoxam-resistant isolate of P. capsici, while mefenoxam failed. The biocontrol efficacy of formulated strains was not affected in different soil types or potting media. However, disease was more severe in sandy soils. In field experiments that were conducted with a mefenoxam-sensitive isolate, disease incidence and severity of Phytophthora blight were significantly reduced at all rates of B. subtilis in 2019 except the 16.8 kg ha −1 rate. In both years, mefenoxam was more effective than B. subtilis in controlling disease in the field. B. subtilis did not affect the spatial dynamics of pathogen spread within rows. While the precise mechanism(s) of action is unclear, in vitro dual-culture tests suggest direct antagonism, as B. subtilis significantly inhibited colony growth of P. capsici. AgBiome has recently released a new formulation of the AFS032321 strain named Theia, with higher active ingredients for commercial applications and biocontrol of P. capsici.