2024 journal article

GA-DRL: Graph Neural Network-Augmented Deep Reinforcement Learning for DAG Task Scheduling Over Dynamic Vehicular Clouds

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 21(4), 4226–4242.

author keywords: Task analysis; Dynamic scheduling; Topology; Vehicle dynamics; Processor scheduling; Heuristic algorithms; Feature extraction; Vehicular cloud; DAG scheduling; deep reinforcement learning; graph neural network
Source: Web Of Science
Added: September 9, 2024

Vehicular Clouds (VCs) are modern platforms for processing of computation-intensive tasks over vehicles. Such tasks are often represented as Directed Acyclic Graphs (DAGs) consisting of interdependent vertices/subtasks and directed edges. However, efficient scheduling of DAG tasks over VCs presents significant challenges, mainly due to the dynamic service provisioning of vehicles within VCs and non-Euclidean representation of DAG tasks' topologies. In this paper, we propose a Graph neural network-Augmented Deep Reinforcement Learning scheme (GA-DRL) for the timely scheduling of DAG tasks over dynamic VCs. In doing so, we first model the VC-assisted DAG task scheduling as a Markov decision process. We then adopt a multi-head Graph ATtention network (GAT) to extract the features of DAG subtasks. Our developed GAT enables a two-way aggregation of the topological information in a DAG task by simultaneously considering predecessors and successors of each subtask. We further introduce non-uniform DAG neighborhood sampling through codifying the scheduling priority of different subtasks, which makes our developed GAT generalizable to completely unseen DAG task topologies. Finally, we augment GAT into a double deep Q-network learning module to conduct subtask-to-vehicle assignment according to the extracted features of subtasks, while considering the dynamics and heterogeneity of the vehicles in VCs. Through simulating various DAG tasks under real-world movement traces of vehicles, we demonstrate that GA-DRL outperforms existing benchmarks in terms of DAG task completion time.