2017 journal article

Salinity Influences on Aboveground and Belowground Net Primary Productivity in Tidal Wetlands

Journal of Hydrologic Engineering, 22(1), D5015002.

By: K. Pierfelice*, B. Graeme Lockaby*, K. Krauss, W. Conner*, G. Noe & M. Ricker*

co-author countries: United States of America 🇺🇸
author keywords: River systems; Salinity; Wetlands; Marshes; Carbon; Nitrogen; Productivity; Baseline data for modeling
Source: Crossref
Added: February 22, 2019

Tidal freshwater wetlands are one of the most vulnerable ecosystems to climate change and rising sea levels. However salinification within these systems is poorly understood, therefore, productivity (litterfall, woody biomass, and fine roots) were investigated on three forested tidal wetlands [(1) freshwater, (2) moderately saline, and (3) heavily salt-impacted] and a marsh along the Waccamaw and Turkey Creek in South Carolina. Mean aboveground (litterfall and woody biomass) production on the freshwater, moderately saline, heavily salt-impacted, and marsh, respectively, was 1,061, 492, 79, and 0 g m−2 year−1 versus belowground (fine roots) 860, 490, 620, and 2,128 g m−2 year−1. Litterfall and woody biomass displayed an inverse relationship with salinity. Shifts in productivity across saline sites is of concern because sea level is predicted to continue rising. Results from the research reported in this paper provide baseline data upon which coupled hydrologic/wetland models can be created to quantify future changes in tidal forest functions.