2018 journal article

Validation and Calibration of Freeway Reliability Methodology in the Highway Capacity Manual: Method and Case Studies

TRANSPORTATION RESEARCH RECORD, 2672(15), 93–104.

TL;DR: Practical calibration and validation methods of the core and reliability analyses described in the Highway Capacity Manual are focused on to provide HCM users with guidance on collecting data for freeway reliability analysis as well as validating the reliability performance measures predictions of the HCM methodology. (via Semantic Scholar)
UN Sustainable Development Goal Categories
Source: Web Of Science
Added: June 4, 2019

Traffic congestion costs drivers an average of $1,200 a year in wasted fuel and time, with most travelers becoming less tolerant of unexpected delays. Substantial efforts have been made to account for the impact of non-recurring sources of congestion on travel time reliability. The 6th edition of the Highway Capacity Manual (HCM) provides a structured guidance on a step-by-step analysis to estimate reliability performance measures on freeway facilities. However, practical implementation of these methods poses its own challenges. Performing these analyses requires assimilation of data scattered in different platforms, and this assimilation is complicated further by the fact that data and data platforms differ from state to state. This paper focuses on practical calibration and validation methods of the core and reliability analyses described in the HCM. The main objective is to provide HCM users with guidance on collecting data for freeway reliability analysis as well as validating the reliability performance measures predictions of the HCM methodology. A real-world case study on three routes on Interstate 40 in the Raleigh-Durham area in North Carolina is used to describe the steps required for conducting this analysis. The travel time index (TTI) distribution, reported by the HCM models, was found to match those from probe-based travel time data closely up to the 80th percentile values. However, because of a mismatch between the actual and HCM estimated incident allocation patterns both spatially and temporally, and the fact that traffic demands in the HCM methods are by default insensitive to the occurrence of major incidents, the HCM approach tended to generate larger travel time values in the upper regions of the travel time distribution.