2020 journal article
Sp2 regulates late neurogenic but not early expansive divisions of neural stem cells underlying population growth in the mouse cortex
DEVELOPMENT, 147(4).
Cellular and molecular mechanisms underlying the switch from self-amplification of cortical stem cells to neuronal and glial generation are incompletely understood despite their importance for neural development. Here we investigated the role of the transcription factor Specificity Protein 2 (Sp2) in expansive and neurogenic divisions of the developing cerebral cortex by combining conditional genetic deletion with the Mosaic Analysis with Double Markers (MADM) system in mice. We find that loss of Sp2 in progenitors undergoing neurogenic divisions results in prolonged mitosis due to extension of early mitotic stages. This disruption is correlated with depletion of the populations of upper layer neurons in the cortex. In contrast, early cortical neural stem cells proliferate and expand normally in the absence of Sp2. These results indicate a stage-specific requirement for Sp2 in neural stem and progenitor cells and reveal mechanistic differences between the early expansive and later neurogenic periods of cortical development.