2019 journal article

Iterative-Learning-Control-Based Tracking for Asteroid Close-Proximity Operations

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 42(5), 1195–1203.

By: J. Long* & F. Wu n

co-author countries: China 🇨🇳 United States of America 🇺🇸
Source: Web Of Science
Added: April 20, 2020

No AccessEngineering NotesIterative-Learning-Control-Based Tracking for Asteroid Close-Proximity OperationsJiateng Long and Fen WuJiateng LongBeijing Institute of Technology, 100081 Beijing, People’s Republic of China*Ph.D. Candidate, School of Aerospace Engineering; .Search for more papers by this author and Fen WuNorth Carolina State University, Raleigh, North Carolina 27695†Professor, Department of Mechanical and Aerospace Engineering; (Corresponding Author).Search for more papers by this authorPublished Online:2 Jan 2019https://doi.org/10.2514/1.G003884SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Kawaguchi J. I., Fujiwara A. and Uesugi T., “Hayabusa–Its Technology and Science Accomplishment Summary and Hayabusa-2,” Acta Astronautica, Vol. 62, Nos. 10–11, 2008, pp. 639–647. doi:https://doi.org/10.1016/j.actaastro.2008.01.028 AASTCF 0094-5765 CrossrefGoogle Scholar[2] Chesley S. R. and et al., “Orbit and Bulk Density of the OSIRIS-REx Target Asteroid (101955) Bennu,” Icarus, Vol. 235, June 2014, pp. 5–22. doi:https://doi.org/10.1016/j.icarus.2014.02.020 ICRSA5 0019-1035 CrossrefGoogle Scholar[3] Tricarico P. and Sykes M. V., “The Dynamical Environment of Dawn at Vesta,” Planetary and Space Science, Vol. 58, No. 12, 2010, pp. 1516–1525. doi:https://doi.org/10.1016/j.pss.2010.07.017 PLSSAE 0032-0633 CrossrefGoogle Scholar[4] Herrera-Sucarrat E., Palmer P. and Roberts R., “Modeling the Gravitational Potential of a Nonspherical Asteroid,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 3, 2013, pp. 790–798. doi:https://doi.org/10.2514/1.58140 JGCODS 0731-5090 LinkGoogle Scholar[5] Scheeres D., Williams B. and Miller J., “Evaluation of the Dynamic Environment of an Asteroid: Applications to 433 Eros,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000, pp. 466–475. doi:https://doi.org/10.2514/2.4552 JGCODS 0731-5090 LinkGoogle Scholar[6] Cui P., Liu Y., Yu Z., Zhu S. and Shao W., “Intelligent Landing Strategy for the Small Bodies: From Passive Bounce to Active Trajectory Control,” Acta Astronautica, Vol. 137, 2017, pp. 232–242. doi:https://doi.org/10.1016/j.actaastro.2017.04.033 AASTCF 0094-5765 CrossrefGoogle Scholar[7] Chauvineau B., Farinella P. and Mignard F., “Planar Orbits About a Triaxial Body: Application to Asteroidal Satellites,” Icarus, Vol. 105, No. 2, 1993, pp. 370–384. doi:https://doi.org/10.1006/icar.1993.1134 ICRSA5 0019-1035 CrossrefGoogle Scholar[8] Scheeres D. J., “Dynamics About Uniformly Rotating Triaxial Ellipsoids: Applications to Asteroids,” Icarus, Vol. 110, No. 2, 1994, pp. 225–238. doi:https://doi.org/10.1006/icar.1994.1118 ICRSA5 0019-1035 CrossrefGoogle Scholar[9] Guelman M., “Closed-Loop Control of Close Orbits Around Asteroids,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 5, 2015, pp. 854–860. doi:https://doi.org/10.2514/1.G000158 JGCODS 0731-5090 LinkGoogle Scholar[10] Guelman M., “Closed-Loop Control for Global Coverage and Equatorial Hovering About an Asteroid,” Acta Astronautica, Vol. 137, Aug. 2017, pp. 353–361. doi:https://doi.org/10.1016/j.actaastro.2017.04.035 AASTCF 0094-5765 CrossrefGoogle Scholar[11] Gui H. and Ruiter A. H. D., “Control of Asteroid-Hovering Spacecraft with Disturbance Rejection Using Position-Only Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2401–2416. doi:https://doi.org/10.2514/1.G002617 JGCODS 0731-5090 LinkGoogle Scholar[12] Furfaro R., “Hovering in Asteroid Dynamical Environments Using Higher-Order Sliding Control,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, 2015, pp. 263–279. doi:https://doi.org/10.2514/1.G000631 JGCODS 0731-5090 LinkGoogle Scholar[13] Arimoto S., Kawamura S. and Miyazaki F., “Bettering Operation of Robots by Learning,” Journal of Field Robotics, Vol. 1, No. 2, 1984, pp. 123–140. doi:https://doi.org/10.1002/rob.4620010203 Google Scholar[14] Bristow D. A., Tharayil M. and Alleyne A. G., “A Survey of Iterative Learning Control,” IEEE Control Systems, Vol. 26, No. 3, 2006, pp. 96–114. doi:https://doi.org/10.1109/MCS.2006.1636313 ISMAD7 0272-1708 CrossrefGoogle Scholar[15] Wu B., Wang D. and Poh E. K., “High Precision Satellite Attitude Tracking Control via Iterative Learning Control,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 3, 2015, pp. 528–534. doi:https://doi.org/10.2514/1.G000497 JGCODS 0731-5090 LinkGoogle Scholar[16] Xu J. and Tan Y., Linear and Nonlinear Iterative Learning Control, Springer, Berlin, 2003, pp. 12–16. Google Scholar[17] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, AIAA, Reston, VA, 1987, pp. 403–405. Google Scholar[18] Schaub H. and Alfriend K. T., “Hybrid Cartesian and Orbit Element Feedback Law for Formation Flying Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 2, 2002, pp. 387–393. doi:https://doi.org/10.2514/2.4893 JGCODS 0731-5090 LinkGoogle Scholar[19] Kumar K., “Attitude Dynamics and Control of Satellites Orbiting Rotating Asteroids,” Acta Mechanica, Vol. 198, Nos. 1–2, 2008, pp. 99–118. doi:https://doi.org/10.1007/s00707-007-0508-y AMHCAP 0001-5970 CrossrefGoogle Scholar Previous article FiguresReferencesRelatedDetailsCited byPassivity-Based Iterative Learning Control for Spacecraft Attitude Tracking on SO(3)Xiaoyu Lang and Anton de Ruiter11 February 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 4Saturated Adaptive Relative Motion Coordination of Docking Ports in Space Close-Range RendezvousIEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 6Neural Network Augmented Intelligent Iterative Learning Control for a Nonlinear SystemSimultaneous Learning Optimization of Hamiltonian Systems and Trajectory Tracking Around an AsteroidAsuto Taniguchi, Satoshi Satoh and Katsuhiko Yamada13 December 2019 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 2Quaternion-based adaptive attitude control of asteroid-orbiting spacecraft via immersion and invarianceActa Astronautica, Vol. 167 What's Popular Volume 42, Number 5May 2019 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAsteroidsAstronomyCelestial Coordinate SystemCelestial MechanicsControl TheoryFeedback ControlGuidance, Navigation, and Control SystemsPlanetary Science and ExplorationPlanetsSolar PhysicsSpace Science and TechnologySpacecraft GuidanceSpacecraft Guidance and Control KeywordsIterative Learning ControlAsteroidsSpacecraft TrajectoriesFeedback ControlNumerical SimulationSolar RadiationConvergence AnalysisRight AscensionSolar SystemOrbital InclinationAcknowledgmentsJ. Long would like to thank the support of the Graduate Technological Innovation Project of Beijing Institute of Technology 2017CX10028 and the China Scholarship Council for sponsoring this research. The authors greatly appreciate the Associate Editor and anonymous reviewers for their patient and rigorous review with high standards, which are of significant benefit for the quality improvement of this paper.PDF Received12 June 2018Accepted18 November 2018Published online2 January 2019