2020 journal article

Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements

AGRICULTURAL WATER MANAGEMENT, 232.

author keywords: Animal waste application; C-Q relationship; Agricultural water management practices
UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
14. Life Below Water (Web of Science)
15. Life on Land (Web of Science)
Source: Web Of Science
Added: April 27, 2020

Intensive agricultural activities, especially in artificially drained agricultural landscapes, generate a considerable amount of nutrient export, which has been identified as a primary cause of water quality impairment. Several management practices have been developed and installed in agricultural watersheds to reduce nutrient export, e.g. nitrate-nitrogen (NO3-N). Although published research reported considerable water quality benefits of these practices, there exist many unanswered questions regarding the inherent processes and mechanisms that control nitrate fate and transport from drained agricultural landscape. To advance our understanding of processes and mechanisms, we deployed two high-frequency sampling systems in a drained agricultural field to investigate the relationship between agricultural drainage and nitrate concentrations (C-Q relationship). Results indicated that the high-frequency measuring system was able to capture the rapidly changing C-Q relationships at the experimental site, e.g. hysteresis patterns. The 22 identified storm events exhibited anti-clockwise behavior with high variability of flushing/dilution effects. In addition, high drainage flows contributed far more nitrate loading compared with lower flows. For instance, the top 10 % of drainage flow exported more than 50 % of the nitrate lost via subsurface drainage during the monitoring period. Additionally, we observed that animal waste application was the most influential practice to change the C-Q relationship by increasing the size of soil nitrogen pools. The insights obtained from the high-frequency water quality measurements could help provide practical suggestions regarding the design and management of conservation practices, such as controlled drainage, bioreactors, and saturated buffers, to improve their nitrogen removal efficiencies. This subsequently leads to better nutrient management in drained agricultural lands.