2020 journal article

Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa


By: C. Malings*, D. Westervelt*, A. Hauryliuk*, A. Presto*, A. Grieshop n, A. Bittner n, M. Beekmann*, R. Subramanian

co-author countries: France 🇫🇷 United States of America 🇺🇸
Source: Web Of Science
Added: August 10, 2020

Abstract. Low-cost particulate mass sensors provide opportunities to assess air quality at unprecedented spatial and temporal resolutions. Established traditional monitoring networks have limited spatial resolution and are simply absent in many major cities across sub-Saharan Africa (SSA). Satellites provide snapshots of regional air pollution but require ground-truthing. Low-cost monitors can supplement and extend data coverage from these sources worldwide, providing a better overall air quality picture. We investigate the utility of such a multi-source data integration approach using two case studies. First, in Pittsburgh, Pennsylvania, both traditional monitoring and dense low-cost sensor networks are compared with satellite aerosol optical depth (AOD) data from NASA's MODIS system, and a linear conversion factor is developed to convert AOD to surface fine particulate matter mass concentration (as PM2.5). With 10 or more ground monitors in Pittsburgh, there is a 2-fold reduction in surface PM2.5 estimation mean absolute error compared to using only a single ground monitor. Second, we assess the ability of combined regional-scale satellite retrievals and local-scale low-cost sensor measurements to improve surface PM2.5 estimation at several urban sites in SSA. In Rwanda, we find that combining local ground monitoring information with satellite data provides a 40 % improvement in surface PM2.5 estimation accuracy with respect to using low-cost ground monitoring data alone. A linear AOD-to-surface-PM2.5 conversion factor developed in Kigali, Rwanda, did not generalize well to other parts of SSA and varied seasonally for the same location, emphasizing the need for ongoing and localized ground-based monitoring, which can be facilitated by low-cost sensors. Overall, we find that combining ground-based low-cost sensor and satellite data, even without including additional meteorological or land use information, can improve and expand spatiotemporal air quality data coverage, especially in data-sparse regions.