2021 journal article

Timescales of excited state relaxation in alpha-RuCl3 observed by time-resolved two-photon photoemission spectroscopy


By: D. Nevola n, A. Bataller n, A. Kumar n, S. Sridhar n, J. Frick n, S. O'Donnell n, H. Ade n, P. Maggard n ...

co-author countries: United States of America 🇺🇸
Source: Web Of Science
Added: June 14, 2021

The nonequilibrium properties of strongly correlated materials present a target in the search for new phases of matter. It is important to observe the types of excitations that exist in these materials and their associated relaxation dynamics. We have studied the photoexcitations in a spin-orbit assisted Mott insulator $\ensuremath{\alpha}\text{\ensuremath{-}}\mathrm{Ru}{\mathrm{Cl}}_{3}$ using time-resolved two-photon photoemission spectroscopy and transient reflection spectroscopy. We find that photoexcited carriers (doublons) in the upper Hubbard band rapidly relax to Mott-Hubbard excitons on a timescale of less than 200 fs. Subsequently, further relaxation of these lower-energy quasiparticles occurs with an energy-dependent time constant of that ranges from 370 to 600 fs due to exciton cooling. The population of Mott-Hubbard excitons persists for timescales up to several microseconds.