2021 journal article

In Vitro Induction and Characterization of Polyploid Hydrangea macrophylla and H. serrata

HORTSCIENCE, 56(6), 709–715.

author keywords: bigleaf hydrangea; chromosome doubling; morphology; mountain hydrangea; nitrotyrosine; oryzalin; polyploidy; whole genome duplication
Source: Web Of Science
Added: July 6, 2021

Hydrangea macrophylla (Thunb.) Ser. and H. serrata (Thunb.) Ser. are popular and commercially important landscape and floriculture crops. Although both species are typically diploid, induced polyploids often exhibit horticulturally valuable traits. Procedures for inducing polyploidy vary by species and often have low or inconsistent efficacy. In this study, oryzalin and nitrotyrosine were investigated as in vitro mitotic inhibitors for inducing polyploidy in H. macrophylla ‘Robert’ and H. serrata ‘MAK20’. First, shoot apices of ‘MAK20’ were treated with 15 μ m oryzalin for 0, 2, 4, 6, or 8 days, and the ploidy of shoots was determined after 8 weeks. A regression analysis showed that the proportion of polyploids (tetraploid plus mixoploid shoots) increased with the exposure duration. During a follow-up experiment, ‘MAK20’ and ‘Robert’ were treated with oryzalin (0 or 15 μ m ) and nitrotyrosine (0, 25, 50, and 100 µ m for ‘MAK20’ and 0, 12.5, 25, 50, and 100 µ m for ‘Robert’) in a factorial treatment arrangement. Oryzalin, nitrotyrosine, and their interaction influenced polyploid frequency for ‘Robert’, whereby the combination of oryzalin (15 μ m ) and nitrotyrosine (50 μ m ) resulted in the highest polyploid induction of 50%. Oryzalin influenced polyploid frequency for ‘MAK20’ ( = 30.4%), but not nitrotyrosine or the interaction between nitrotyrosine and oryzalin. Morphology and pollen germination of these autotetraploid ‘Robert’, ‘MAK20’, and previously developed autotetraploid H. macrophylla ‘David Ramsey’ plants were compared with their diploid counterparts 1 year after plants were moved ex vitro. Compared with diploids, tetraploid hydrangeas had larger leaves, thicker stems, lower leaf area/fresh weight ratios, and longer internodes. Although all tetraploids exhibited fewer inflorescences per plant, both H. macrophylla cultivars had larger inflorescence diameters and ‘David Ramsey’ had a greater number of showy florets (sterile florets with enlarged, decorative sepals) per inflorescence. Sepal colors were compared using International Commission on Illumination L*a*b* color space. Tetraploid ‘MAK20’ had lower L* values (darker sepals), and tetraploid ‘Robert’ and ‘MAK20’ both had higher a* values (redder sepals). Pollen germination rates were greatly reduced in all tetraploid lines, but they retained some viability. These results provide an effective protocol for in vitro polyploid induction of Hydrangea sp. and documented certain desirable traits associated with tetraploid phenotypes.